Unique equilibrium states for geodesic flows in nonpositive curvature

Todd Fisher

Department of Mathematics Brigham Young University

Fractal Geometry, Hyperbolic Dynamics and Thermodynamical Formalism Joint work with K. Burns, V. Climenhaga, and D. Thompson

Outline

2 Surfaces with nonpositive curvature

3 Climenhaga-Thompson program

Decomposition for a surface of nonpositive curvature

Topological entropy

- $\mathcal{F} = f_t : X \to X$ a smooth flow on a compact manifold
- Bowen ball : $B_T(x; \epsilon) = \{y : d(f_t y, f_t x) < \epsilon \text{ for } 0 \le t \le T\}$
- x_1, \ldots, x_n are (T, ϵ) -spanning if $\bigcup_{i=1}^n B_T(x_i; \epsilon) = X$

Topological entropy

• $\mathcal{F} = f_t : X \to X$ a smooth flow on a compact manifold

- Bowen ball : $B_T(x; \epsilon) = \{y : d(f_t y, f_t x) < \epsilon \text{ for } 0 \le t \le T\}$
- x_1, \ldots, x_n are (T, ϵ) -spanning if $\bigcup_{i=1}^n B_T(x_i; \epsilon) = X$

 $\Lambda^{\operatorname{span}}(T,\epsilon) = \inf \left\{ \#(E) \mid E \subset X \text{ is } (T,\epsilon) \text{-spanning} \right\}$

$$h_{top}(\mathcal{F}) = \lim_{\epsilon o 0} \limsup_{T o \infty} rac{1}{T} \log \Lambda^{\mathrm{span}}(T,\epsilon)$$

Remark: An equivalent definition is $h_{top}(\mathcal{F}) = h_{top}(f_1)$ where the second term is the entropy of the time-1 map.

Measure entropy and the variational principle

For a flow $\mathcal{F} = (f_t)_{t \in \mathbb{R}}$ let $\mathcal{M}(f_t)$ be the set of f_t -invariant Borel probability measures and $\mathcal{M}(\mathcal{F}) = \bigcap_{t \in \mathbb{R}} \mathcal{M}(f_t)$ be the set of flow invariant Borel probability measures.

For $\mu \in \mathcal{M}(\mathcal{F})$ the measure theoretic entropy of \mathcal{F} for μ is $h_{\mu}(\mathcal{F}) = h_{\mu}(f_1)$.

(Variational Principle) $h_{top}(\mathcal{F}) = \sup_{\mu \in \mathcal{M}(\mathcal{F})} h_{\mu}(\mathcal{F})$

Topological pressure

φ : X → ℝ a continuous function. We will refer to this as a potential function or observable.

$$\Lambda^{\text{span}}(\varphi; T, \epsilon) = \inf \left\{ \sum_{x \in E} e^{\int_0^T \varphi(f_t x) \, dt} \mid E \subset X \text{ is } (T, \epsilon) \text{-spanning} \right\}$$
$$P(\varphi, \mathcal{F}) = \lim_{\epsilon \to 0} \limsup_{T \to \infty} \frac{1}{T} \log \Lambda^{\text{span}}(\varphi; T, \epsilon)$$

Remark: When $\varphi \equiv 0$, $P(\varphi, \mathcal{F}) = h_{top}(\mathcal{F})$

The variational principle for pressure

Let $\mu \in \mathcal{M}(\mathcal{F})$. Then

$$\mathsf{P}_{\mu}(arphi,\mathcal{F})=\mathsf{h}_{\mu}(\mathcal{F})+\intarphi\,\mathsf{d}\mu$$

(Variational Principle for Pressure)

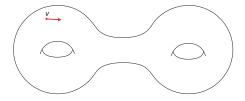
$$P(arphi,\mathcal{F}) = \sup_{\mu\in\mathcal{M}(\mathcal{F})} P_{\mu}(arphi,\mathcal{F})$$

 $\mu \in \mathcal{M}(\mathcal{F})$ is an equilibrium state for φ if $P_{\mu}(\varphi, \mathcal{F}) = P(\varphi, \mathcal{F})$.

If the flow is C^{∞} there is an equilibrium state for any continuous potential (Newhouse: upper semi continuity of $\mu \mapsto h_{\mu}$, and the set of measures is compact)

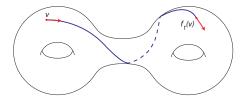
Geodesic flow

M compact Riemannian manifold with negative sectional curvatures.



Geodesic flow

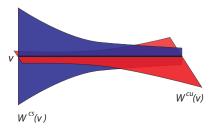
M compact Riemannian manifold with negative sectional curvatures.



Let T^1M be the unit tangent bundle. $f_t: T^1M \to T^1M$ geodesic flow

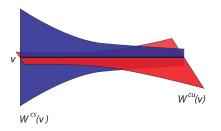
Properties of geodesic flows for negative curvature

The flow is Anosov (*TT*¹*M* = E^s ⊕ E^c ⊕ E^u) where the splitting is given by the flow direction (E^c) and the tangent spaces to the stable and unstable horospheres (E^s and E^u), and the flow is volume preserving (Liouville measure)



Properties of geodesic flows for negative curvature

The flow is Anosov (*TT*¹*M* = E^s ⊕ E^c ⊕ E^u) where the splitting is given by the flow direction (E^c) and the tangent spaces to the stable and unstable horospheres (E^s and E^u), and the flow is volume preserving (Liouville measure)



• Bowen: any Hölder continuous potential φ has a unique equilibrium state, and the geometric potential $\varphi^u = -\lim_{t\to 0} \frac{1}{t} \log \operatorname{Jac}(Df_t | E^u)$ has a unique equilibrium state

Outline

Introduction

2 Surfaces with nonpositive curvature

3 Climenhaga-Thompson program

Decomposition for a surface of nonpositive curvature

Nonpositive curvature

M compact manifold with nonpositive curvature

 $f_t : T^1M \to T^1M$ geodesic flow. There are still foliations globally defined that are similar to stable and unstable foliations.

Two types of geodesic:

regular: horospheres in M do not make second order contact

singular: horospheres in *M* make second order contact (stable and unstable foliations are tangent)

Nonpositive curvature

M compact manifold with nonpositive curvature

 $f_t : T^1M \to T^1M$ geodesic flow. There are still foliations globally defined that are similar to stable and unstable foliations.

Two types of geodesic:

regular: horospheres in M do not make second order contact

singular: horospheres in M make second order contact (stable and unstable foliations are tangent)

For a surface:

regular = geodesic passes through negative curvature singular = curvature is zero everywhere along the geodesic

Rank of the manifold

A Jacobi field along a geodesic γ is a vector field along γ that satisfied the equation

$$J''(t) + R(J(t), \dot{\gamma}(t))\dot{\gamma}(t) = 0$$

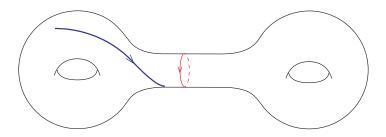
The rank of a vector $v \in T^1M$ is the dimension of the space of parallel Jacobi vector fields on the geodesic $\gamma_v : \mathbb{R} \to M$.

The rank of M is the minimum rank over all vectors in T^1M (always at least 1).

Standing Assumption: M is a compact rank 1 manifold with nonpositive curvature. (Rules out manifolds such as the torus.)

Example

— singular geodesic — regular geodesic



Previous result

Reg = set of vectors in T^1M whose geodesics are regular, and Sing= set of vectors in T^1M whose geodesics are singular.

 $T^1M = \operatorname{Reg} \cup \operatorname{Sing}$

Reg is open and dense, and geodesic flow is ergodic on Reg.

Open problem: What is Liouville measure of Reg?

Previous result

Reg = set of vectors in T^1M whose geodesics are regular, and Sing= set of vectors in T^1M whose geodesics are singular.

 $T^1M = \operatorname{Reg} \cup \operatorname{Sing}$

Reg is open and dense, and geodesic flow is ergodic on Reg.

Open problem: What is Liouville measure of Reg?

(Knieper, 98) There is a unique measure of maximal entropy. It is supported on Reg.

For surfaces $h_{top}(\text{Sing}, \mathcal{F}) = 0$. Generally, $h_{top}(\text{Sing}, \mathcal{F}) < h_{top}(\mathcal{F})$

Assume: *M* is a compact rank 1 manifold with nonpositive curvature and $\text{Sing} \neq \emptyset$.

The next results follow from a general result that is stated later.

Assume: *M* is a compact rank 1 manifold with nonpositive curvature and $\text{Sing} \neq \emptyset$.

The next results follow from a general result that is stated later.

Theorem

(Burns, Climenhaga, F, Thompson) If $\varphi: T^1M \to (0, h_{top}(\mathcal{F}) - h_{top}(\operatorname{Sing}))$ is Hölder continuous, then φ has a unique equilibrium state.

Assume: *M* is a compact rank 1 manifold with nonpositive curvature and $\text{Sing} \neq \emptyset$.

The next results follow from a general result that is stated later.

Theorem

(Burns, Climenhaga, F, Thompson) If $\varphi: T^1M \to (0, h_{top}(\mathcal{F}) - h_{top}(\operatorname{Sing}))$ is Hölder continuous, then φ has a unique equilibrium state.

Theorem

(Burns, Climenhaga, F, Thompson) If $h_{top}(Sing) = 0$, then $q\varphi^u$ has a unique equilibrium state for each q < 1 and the graph of $q \mapsto P(q\varphi^u)$ has a tangent line for all q < 1.

Assume: *M* is a compact rank 1 manifold with nonpositive curvature and $\text{Sing} \neq \emptyset$.

The next results follow from a general result that is stated later.

Theorem

(Burns, Climenhaga, F, Thompson) If $\varphi : T^1 M \to (0, h_{top}(\mathcal{F}) - h_{top}(\operatorname{Sing}))$ is Hölder continuous, then φ has a unique equilibrium state.

Theorem

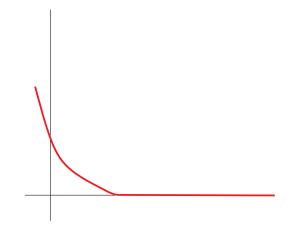
(Burns, Climenhaga, F, Thompson) If $h_{top}(Sing) = 0$, then $q\varphi^u$ has a unique equilibrium state for each q < 1 and the graph of $q \mapsto P(q\varphi^u)$ has a tangent line for all q < 1.

Theorem

(Burns, Climenhaga, F, Thompson) There is $q_0 > 0$ such that if $q \in (-q_0, q_0)$, then the potential $q\varphi^u$ has a unique equilibrium state.

$P(q\varphi^u)$ for a surface with Sing $\neq \emptyset$

The graph of $q \mapsto P(-q\varphi^u)$ has a corner at (1,0) created by μ_{Liou} and measures supported on Sing.



Outline

Introduction

- 2 Surfaces with nonpositive curvature
- 3 Climenhaga-Thompson program
- Decomposition for a surface of nonpositive curvature

Bowen's result

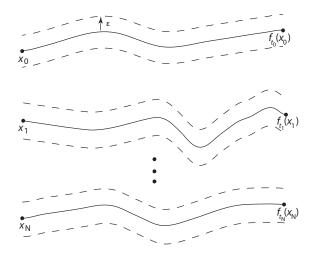
There is a unique equilibrium state for φ if

- \mathcal{F} is expansive: For every c > 0 there is some $\epsilon > 0$ such that $d(f_t x, f_{s(t)} y) < \epsilon$ for all $t \in \mathbb{R}$ all $x, y \in \mathbb{R}$ and a continuous function $s : \mathbb{R} \to \mathbb{R}$ with s(0) = 0 if $y = f_{\gamma} x$ for some $\gamma \in [-c, c]$.
- \mathcal{F} has specification: next slide
- φ has the Bowen property: there exist K > 0 and ε > 0 such that for any T > 0, if d(f_tx, f_ty) < ε for 0 ≤ t ≤ T, then

$$\left|\int_0^T \varphi(f_t x) dt - \int_0^T \varphi(f_t y) dt\right| < K.$$

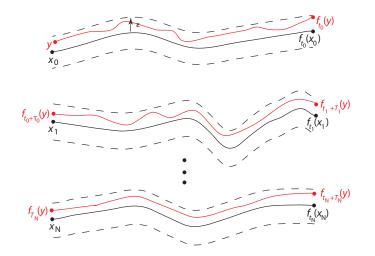
Specification

Given $\epsilon > 0 \exists \tau(\epsilon) > 0$ such that for all $(x_0, t_0), ..., (x_N, t_N) \in X \times [0, \infty)$ there exists a point y and $\tau_i \in [0, \tau(\epsilon)]$ for $0 \le i < N$ such that



Specification

Given $\epsilon > 0 \exists \tau(\epsilon) > 0$ such that for all $(x_0, t_0), ..., (x_N, t_N) \in X \times [0, \infty)$ there exists a point y and $\tau_i \in [0, \tau(\epsilon)]$ for $0 \le i < N$ such that



Climenhaga-Thompson Idea

Nonuniform version of Bowen's approach

Even if the flow may not be expansive, nor have specification, and the potential may not be Bowen, there is a unique equilibrium state if for large T the set of orbit segments of length at most T that have

- expansive properties
- specification for orbits segments of length at most T
- Bowen-like properties

has sufficiently large pressure, and the set of orbit segments of length T that don't have those properties has sufficiently small pressure

Decomposing orbit segments

 $\mathcal{F} = f_t$ flow on X

 $\mathcal{O} = X \times [0, \infty) = \{ \text{finite orbit segments} \}$

* = concatenation of orbit segments

Three subsets of \mathcal{O} : \mathcal{P} (prefix), \mathcal{G} (good), \mathcal{S} (suffix)

So for each $(x, t) \in \mathcal{O} \exists p = p(x, t) \ge 0$, $g = g(x, t) \ge 0$, and $s = s(x, t) \ge 0$ such that

- $(x,p) \in \mathcal{P}$,
- $(f_p(x),g) \in \mathcal{G}$,
- $(f_{p+g}(x),s)\in\mathcal{S}$, and
- p+g+s=t.

Outline of theorem

Suppose we have a decomposition (so sets $\mathcal{P}, \mathcal{G}, \mathcal{S} \subset \mathcal{O}$ and functions p, g, and s):

- $\bullet\,$ expansivity and specification for orbit segments in ${\cal G}\,$
- φ has the Bowen property on segments in ${\cal G}$
- $P(\varphi; \mathcal{P} \cup \mathcal{S}) < P(\varphi)$

Then φ has a unique equilibrium state

Climenhaga-Thompson: (2012) symbolic systems such as β -shifts Climenhaga-F-Thompson: (preprint) partially hyperbolic examples Climenhaga-Thompson: (preprint) Flow version of the theorem

Outline

Introduction

- 2 Surfaces with nonpositive curvature
- 3 Climenhaga-Thompson program

4 Decomposition for a surface of nonpositive curvature

Decomposition for surfaces

 $\kappa(v) =$ minimium curvature of the two horospheres othogonal to v

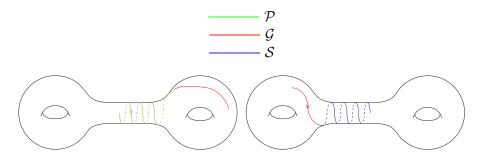
(v, t) is δ -bad if $\text{Leb}\{s \in [0, t] : \kappa(f_s(v)) \ge \delta\} \le \delta t$. (less than δ - proportion of the time where we have δ curvature)

$$\mathcal{P} = \mathcal{S} = \{(v,t) \in \mathcal{O} : (v,t) ext{ is } \delta ext{-bad}\}$$

To decompose $(v, t) \in \mathcal{O}$:

- \bullet Find longest initial segment that is in ${\cal P}$
- Find longest tail segment of the remainder that is in ${\cal S}$
- What is left is in $\mathcal{G} = \mathcal{G}(\delta)$

Example of the decomposition



 $(v, t) \in \mathcal{O}$ is decomposed to $(v, p) \in \mathcal{P}$, $(f_p(v), g) \in \mathcal{G}$, and $(f_{p+g}(v), s) \in \mathcal{S}$ where p + g + s = n.

Note: This does not tell us about the (forward or backward) asymptotic behavior of the orbit segments.

Properties of \mathcal{G}

Important property: For $(x, T) \in \mathcal{G}$ we know that for all 0 < t < T we have

- E_x^s is contracted a uniform amount (depending on δ) for Df_t and
- $E^{u}_{f_{T}(x)}$ is contracted a uniform amount for Df_{-t} .

Properties of \mathcal{G}

Important property: For $(x, T) \in \mathcal{G}$ we know that for all 0 < t < T we have

- E_x^s is contracted a uniform amount (depending on δ) for Df_t and
- $E^{u}_{f_{T}(x)}$ is contracted a uniform amount for Df_{-t} .
- 1. To show ${\mathcal G}$ has specification is an adaptation of standard arguments

Properties of \mathcal{G}

Important property: For $(x, T) \in \mathcal{G}$ we know that for all 0 < t < T we have

- E_x^s is contracted a uniform amount (depending on δ) for Df_t and
- $E^{u}_{f_{T}(x)}$ is contracted a uniform amount for Df_{-t} .
- 1. To show ${\mathcal G}$ has specification is an adaptation of standard arguments

2. It is not known if φ^u is Hölder continuous (so Bowen) on T^1M . This has been a major obstacle with other techniques. We are able to show it is Bowen just on \mathcal{G} and sidestep the problem.

Properties of \mathcal{P} and \mathcal{S}

The idea is to show that the pressure on $\mathcal{P} \cup \mathcal{S}$ approaches the pressure Sing for δ small.

In fact we prove the next general result.

Properties of ${\mathcal P}$ and ${\mathcal S}$

The idea is to show that the pressure on $\mathcal{P} \cup \mathcal{S}$ approaches the pressure Sing for δ small.

In fact we prove the next general result.

Theorem

(Burns, Climenhaga, F, Thompson) If $\varphi : T^1M \to \mathbb{R}$ is continuous such that there exists some $\delta_0 > 0$ such that for all $\delta \in (0, \delta_0)$ the potential φ has the Bowen property on $\mathcal{G}(\delta)$, then there is a dichotomy:

- either $P(\varphi, Sing) < P(\varphi)$ and there is a unique equilibrium state, that is fully supported, or
- P(φ, Sing) = P(φ) and there is an equilibrium state supported on Sing.

Thank You!

